Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.289
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 287, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581592

RESUMO

The rumen microbiota is important for energy and nutrient acquisition in cattle, and therefore its composition may also affect carcass merit and meat quality attributes. In this study, we examined the associations between archaeal and bacterial taxa in the rumen microbiota of beef cattle and 12 different attributes, including hot carcass weight (HCW), dressing percentage, ribeye area (REA), intramuscular fat content, marbling score, fat thickness, yield grade, moisture content, purge loss, and shear force. There were significant correlations between the relative abundance of certain archaeal and bacterial genera and these attributes. Notably, Selenomonas spp. were positively correlated with live weight and HCW, while also being negatively correlated with purge loss. Members of the Christensenellaceae R-7, Moryella, and Prevotella genera exhibited positive and significant correlations with various attributes, such as dressing percentage and intramuscular fat content. Ruminococcaceae UCG-001 was negatively correlated with live weight, HCW, and dressing percentage, while Acidaminococcus and Succinivibrionaceae UCG-001 were negatively correlated with intramuscular fat content, moisture content, and marbling score. Overall, our findings suggest that specific changes in the rumen microbiota could be a valuable tool to improve beef carcass merit and meat quality attributes. Additional research is required to better understand the relationship between the rumen microbiota and these attributes, with the potential to develop microbiome-targeted strategies for enhancing beef production. KEY POINTS: • Certain rumen bacteria were associated with carcass merit and meat quality • Moryella was positively correlated with intramuscular fat in beef carcasses • Acidaminococcus spp. was negatively correlated with marbling and intramuscular fat.


Assuntos
Composição Corporal , Microbiota , Bovinos , Animais , Rúmen , Carne/análise , Bactérias , Archaea
2.
Appl Microbiol Biotechnol ; 108(1): 289, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587649

RESUMO

Rumen microbial urease inhibitors have been proposed for regulating nitrogen emission and improving nitrogen utilization efficiency in ruminant livestock industry. However, studies on plant-derived natural inhibitors of rumen microbial urease are limited. Urease accessory protein UreG, plays a crucial role in facilitating urease maturation, is a new target for design of urease inhibitor. The objective of this study was to select the potential effective inhibitor of rumen microbial urease from major protoberberine alkaloids in Rhizoma Coptidis by targeting UreG. Our results showed that berberine chloride and epiberberine exerted superior inhibition potential than other alkaloids based on GTPase activity study of UreG. Berberine chloride inhibition of UreG was mixed type, while inhibition kinetics type of epiberberine was uncompetitive. Furthermore, epiberberine was found to be more effective than berberine chloride in inhibiting the combination of nickel towards UreG and inducing changes in the second structure of UreG. Molecular modeling provided the rational structural basis for the higher inhibition potential of epiberberine, amino acid residues in G1 motif and G3 motif of UreG formed interactions with D ring of berberine chloride, while interacted with A ring and D ring of epiberberine. We further demonstrated the efficacy of epiberberine in the ruminal microbial fermentation with low ammonia release and urea degradation. In conclusion, our study clearly indicates that epiberberine is a promising candidate as a safe and effective inhibitor of rumen microbial urease and provides an optimal strategy and suitable feed additive for regulating nitrogen excretion in ruminants in the future. KEY POINTS: • Epiberberine is the most effective inhibitor of rumen urease from Rhizoma Coptidis. • Urease accessory protein UreG is an effective target for design of urease inhibitor. • Epiberberine may be used as natural feed additive to reducing NH3 release in ruminants.


Assuntos
Berberina , Berberina/análogos & derivados , Animais , Berberina/farmacologia , Urease , Amônia , Cloretos , Rúmen , Inibidores Enzimáticos/farmacologia , Nitrogênio , Ruminantes
3.
Reprod Domest Anim ; 59(4): e14558, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38566368

RESUMO

We aimed to evaluate the effects of rumen-protected lysine (RPL) supplementation during the close-up period on uterine involution and the resumption of ovarian function in dairy cows. Fifty-two multiparous Holstein cows were categorized based on parity and expected calving date and randomly assigned to the RPL or control (CON) groups. The RPL group received 80 g of RPL daily from day 21 before the expected calving date until parturition. Blood samples were obtained twice weekly from pre-supplementation to 6 weeks postpartum. The onset of luteal activity postpartum was determined via ultrasonography twice weekly for up to 6 weeks postpartum. Uterine involution was tracked at 3 and 5 weeks postpartum through the vaginal discharge score, percentage of polymorphonuclear cells (PMN) in endometrial cytology samples, presence of intrauterine fluid, and gravid horn diameter via ultrasonography. Before supplementation, the RPL group showed amino acid imbalance, which was improved by RPL supplementation. There were no significant differences in the onset of luteal activity, percentage of PMN, intrauterine fluid, or the diameter of the uterine horn between the two groups. The vaginal discharge score in the RPL group decreased from 3 to 5 weeks postpartum, whereas that in the CON groups did not decrease. The number of cows with clinical endometritis was lower in the RPL group. Overall, RPL supplementation during the close-up period enhanced vaginal discharge clearance, potentially averting clinical endometritis, but did not affect the first ovulation in dairy cows.


Assuntos
Doenças dos Bovinos , Endometrite , Descarga Vaginal , Animais , Bovinos , Feminino , Gravidez , Doenças dos Bovinos/tratamento farmacológico , Doenças dos Bovinos/prevenção & controle , Doenças dos Bovinos/metabolismo , Dieta/veterinária , Suplementos Nutricionais , Endometrite/prevenção & controle , Endometrite/veterinária , Endometrite/metabolismo , Lactação , Luteína/análise , Luteína/metabolismo , Lisina/farmacologia , Leite/química , Período Pós-Parto , Rúmen/metabolismo , Descarga Vaginal/veterinária
4.
Animal ; 18(4): 101127, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38574452

RESUMO

Supplementing a diet with rumen-protected amino acids (AAs) is a common feeding strategy for efficient production. For a cost-effective use of rumen-protected AA, the accurate bioavailability of rumen-protected amino acids should be known and their metabolism after absorption needs to be well understood. The current study determined the bioavailability, absorption, utilization, and excretion of rumen-protected Lys (RP-Lys). Four ruminally cannulated cows in a 4 × 4 Latin square design (12 d for diet adaptation; 5 or 6 d for total collections) received the following treatments: L0, a basal diet; L25, the basal diet and L-Lys infused into the abomasum to provide 25.9 g/d L-Lys; L50, the basal diet and L-Lys infused into the abomasum to provide 51.8 g/d L-Lys; and RPL, the basal diet supplemented with 105 g/d (as-is) of RP-Lys to provide 26.7 g of digestible Lys. During the last 5 or 6 d in each period, 15N-Lys (0.38 g/d) was infused into the abomasum for all cows to label the pool of AA, and the total collection of milk, urine, and feces were conducted. 15N enrichment of samples on d 4 and 5 were used to calculate the bioavailability and Lys metabolism. We used a model containing a fast AA turnover (≤ 5 d) and slow AA turnover pool (> 5 d) to calculate fluxes of Lys. The Lys flux to the fast AA turnover pool (absorbed Lys + Lys from the slow AA turnover pool to fast AA turnover pool) was calculated using 15N enrichment of milk Lys. The flux of Lys from the fast AA turnover pool to milk and urine was calculated using 15N transfer into milk and urine. Then, absorbed Lys was estimated by the sum of Lys flux to milk and urine assuming no net utilization of Lys by body tissues. Duodenal Lys flow was estimated by 15N enrichment of fecal Lys. The bioavailability of RP-Lys was calculated from duodenal Lys flows and Lys absorption for RPL. Increasing Lys supply from L25 to L50 increased Lys utilization for milk by 9 g/d but also increased urinary excretion by 10 g/d. For RPL, absorbed Lys was estimated to be 136 g/d where 28 g of absorbed Lys originated from RP-Lys. In conclusion, 68% of bioavailability was obtained for RP-Lys. The Lys provided from RP-Lys was not only utilized for milk protein (48%) but also excreted in urine (20%) after oxidation.


Assuntos
Lactação , Lisina , Feminino , Bovinos , Animais , Lisina/metabolismo , Rúmen/metabolismo , Disponibilidade Biológica , Dieta/veterinária , Aminoácidos/metabolismo , Proteínas do Leite/metabolismo , Aminas/metabolismo , Metionina/metabolismo
5.
Anim Biotechnol ; 35(1): 2337748, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38592802

RESUMO

The use of chitosan (CHI) in ruminant diets is a promising natural modifier for rumen fermentation, capable of modulating both the rumen pattern and microbial activities. The objective of this study was to explore the rumen fermentation and microbial populations in Dhofari goats fed a diet supplemented with CHI. A total of 24 Dhofari lactating goats (body weight, 27.32 ± 1.80 kg) were assigned randomly into three experimental groups (n = 8 ewes/group). Goats were fed a basal diet with either 0 (control), 180 (low), or 360 (high) mg CHI/kg of dietary dry matter (DM) for 45 days. Feeding high CHI linearly increased (p < 0.05) the propionate level and reduced the acetate, butyrate, and total protozoa count (p < 0.05). Ruminal ammonia nitrogen (NH3-N) concentrations and the acetate:propionate ratio decreased linearly when goats were fed CHI (p < 0.05). The abundances of both Spirochetes and Fibrobacteres phyla were reduced (p < 0.05) with both CHI doses relative to the control. Both low and high CHI reduced (p < 0.05) the relative abundances of Butyrivibrio hungatei, Fibrobacter succinogenes, Ruminococcus albus, Ruminococcus flavefaciens, Selenomonas ruminantium and Neocallimastix californiae populations. Adding CHI significantly decreased (p < 0.05) the abundances of Ascomycota, Basidiomycota, and Bacillariophyta phyla compared to the control. Adding CHI to the diet reduces the abundance of fibrolytic-degrading bacteria, however, it increases the amylolytic-degrading bacteria. Application of 360 mg of CHI/kg DM modified the relative populations of ruminal microbes, which could enhance the rumen fermentation patterns in Dhofari goats.


Assuntos
Quitosana , Animais , Ovinos , Feminino , Quitosana/metabolismo , Propionatos/metabolismo , Rúmen/metabolismo , Lactação , Cabras , Fermentação , Dieta/veterinária , Acetatos/metabolismo , Ração Animal/análise
6.
Animal ; 18(4): 101134, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38593679

RESUMO

Animal nutritionists continue to investigate new strategies to combat the challenge of methane emissions from ruminants. Medicinal plants (MPs) are known to be beneficial to animal health and exert functional roles in livestock due to their phytogenic compounds with antimicrobial, immunostimulatory, antioxidative, and anti-inflammatory activities. Some MP has been reported to be anti-methanogenic and can effectively lower ruminants' enteric methane emissions. This review overviews trends in MP utilization in ruminants, their bioactivity and their effectiveness in lowering enteric methane production. It highlights the MP regulatory mechanism and the gaps that must be critically addressed to improve its efficacy. MP could reduce enteric methane production by up to 8-50% by regulating the rumen fermentation pathway, directing hydrogen toward propionogenesis, and modifying rumen diversity, structure, and population of the methanogens and protozoa. Yet, factors such as palatability, extraction techniques, and economic implications must be further considered to exploit their potential fully.


Assuntos
Plantas Medicinais , Animais , Plantas Medicinais/metabolismo , Metano/metabolismo , Ruminantes/metabolismo , Fermentação , Rúmen/metabolismo
7.
PLoS One ; 19(4): e0296447, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635552

RESUMO

The aim of this study was to develop and validate regression models to predict the chemical composition and ruminal degradation parameters of corn silage by near-infrared spectroscopy (NIR). Ninety-four samples were used to develop and validate the models to predict corn silage composition. A subset of 23 samples was used to develop and validate models to predict ruminal degradation parameters of corn silage. Wet chemistry methods were used to determine the composition values and ruminal degradation parameters of the corn silage samples. The dried and ground samples had their NIR spectra scanned using a poliSPECNIR 900-1700 model NIR sprectrophotometer (ITPhotonics S.r.l, Breganze, IT.). The models were developed using regression by partial least squares (PLS), and the ordered predictor selection (OPS) method was used. In general, the regression models obtained to predict the corn silage composition (P>0.05), except the model for organic matter (OM), adequately estimated the studied properties. It was not possible to develop prediction models for the potentially degradable fraction in the rumen of OM and crude protein and the degradation rate of OM. The regression models that could be obtained to predict the ruminal degradation parameters showed correlation coefficient of calibration between 0.530 and 0.985. The regression models developed to predict CS composition accurately estimated the CS composition, except the model for OM. The NIR has potential to be used by nutritionists as a rapid prediction tool for ruminal degradation parameters in the field.


Assuntos
Silagem , Zea mays , Animais , Silagem/análise , Espectroscopia de Luz Próxima ao Infravermelho , Rúmen/metabolismo , Digestão , Fermentação , Dieta
8.
PLoS One ; 19(4): e0300864, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635849

RESUMO

Chia (Salvia hispanica L.) seed (CS) and Pumpkin (Cucurbita moschata) seed (PS) are used in ruminant diets as energy sources. The current experiment studied the impact of dietary inclusion of CS and PS on nutrient intake and digestibility, milk yield, and milk composition of dairy sheep. Twelve primiparous Texel × Suffolk ewes [70 ± 5 days in milk (DIM); 0.320 ± 0.029 kg milk yield] were distributed in a 4 × 3 Latin square design and fed either a butter-based control diet [CON; 13 g/kg dry matter] or two diets with 61 g/kg DM of either CS or PS. Dietary inclusion of CS and PS did not alter live weight (p >0.1) and DM intake (p >0.1). However, compared to the CON, dietary inclusion of both CS and PS increased the digestibility of neutral detergent fiber (p <0.001) and acid detergent lignin (p < 0.001). Milk production (p = 0.001), fat-corrected milk (p < 0.001), and feed efficiency (p < 0.001) were enhanced with PS, while the highest milk protein yield (p < 0.05) and lactose yield (p < 0.001) were for CS-fed ewes. Compared to the CON diet, the ingestion of either CS and/or PS decreased (p < 0.001) the C16:0 in milk. Moreover, both CS and PS tended to enhance the content of C18:3n6 (p > 0.05) and C18:3n3 (p > 0.05). Overall short-term feeding of CS and/or PS (up to 6.1% DM of diet) not only maintains the production performance and digestibility of nutrients but also positively modifies the milk FA composition.


Assuntos
Cucurbita , Animais , Feminino , Ovinos , Cucurbita/metabolismo , Lactação , Salvia hispanica , Detergentes , Fibras na Dieta/metabolismo , Dieta/veterinária , Sementes/metabolismo , Digestão , Ração Animal/análise , Zea mays/metabolismo , Suplementos Nutricionais/análise , Rúmen/metabolismo
9.
Anim Sci J ; 95(1): e13938, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38567743

RESUMO

We compared the in situ dry matter degradability (ISDMD) and crude protein degradability (ISCPD) of high-moisture corn grain silage and dried corn grains produced in Japan (JHC and JDC, respectively) with corn grains imported from the United States (USC), Brazil (BRC), and South Africa (SAC). The ISDMD values of USC, BAC, and SAC were between those of JHC and JDC, but ISDMD did not differ significantly between USC and SAC. In contrast, ISDMD was lower for BAC than USC and SAC. Overall, our results indicate that ISDMD and ISCPD in the rumen differ between corn grains sources (domestic compared with imported and between production locations), primarily due to differences between the corn varieties represented. In particular, the ISDMD and ISCPD of JHC were greater than those of JDC, and this difference in degradability needs to be considered when using high-moisture corn grain silage as a substitute for dried corn grain as a feed for dairy cattle.


Assuntos
Silagem , Zea mays , Bovinos , Feminino , Animais , Silagem/análise , Lactação/metabolismo , Japão , Dieta/veterinária , Rúmen/metabolismo , Ração Animal/análise , Digestão , Leite/metabolismo , Grão Comestível/metabolismo
10.
Vet Parasitol Reg Stud Reports ; 50: 101012, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38644044

RESUMO

A substantial parallel increase in prevalence and geographical spread of the rumen fluke, Calicophoron daubneyi, in livestock in western and central Europe has been recognized in the recent past. In the course of the examination of rectum feces of 471 red deer (Cervus elaphus) and one sika deer (Cervus nippon) from the Fascioloides magna endemic Sumava National Park in the years 2021 and 2022, rumen fluke eggs were detected in four red deer (0.8%) and the sika deer and identified as eggs of C. daubneyi by molecular analysis. Subsequent examination of rectal fecal samples of 247 beef cattle from 22 herds of 14 farms located in or nearby the national park revealed rumen fluke eggs in 53 samples (21.5%) originating from 16 herds of 11 farms, molecularly identified as C. daubneyi eggs as well. One C. daubneyi egg positive red deer and three C. daubneyi egg positive cattle samples also contained fasciolid eggs, respectively, which were detected in 9.5% or 3.6% of the total samples from red deer or cattle, respectively. Results of this investigation reveal the first finding of C. daubneyi in sika deer worldwide and in red deer in mainland Europe and add to the growing number of reports on C. daubneyi in livestock in Europe. Considering that the ratio of cattle excreting rumen fluke eggs exceeded that of deer substantially, it can reasonably be assumed that the C. daubneyi infections in deer are a consequence of the prevalent infection in cattle, illustrating a pathogen spillover event from livestock into wildlife.


Assuntos
Doenças dos Bovinos , Cervos , Fezes , Paramphistomatidae , Rúmen , Infecções por Trematódeos , Animais , Bovinos , Cervos/parasitologia , República Tcheca/epidemiologia , Infecções por Trematódeos/veterinária , Infecções por Trematódeos/epidemiologia , Infecções por Trematódeos/parasitologia , Paramphistomatidae/isolamento & purificação , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/parasitologia , Rúmen/parasitologia , Prevalência , Fezes/parasitologia , Parques Recreativos
11.
Sci Rep ; 14(1): 8505, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38605045

RESUMO

The 2-hydroxy-4-(methylthio) butanoic acid isopropyl ester (HMBi), a rumen protective methionine, has been extensively studied in dairy cows and beef cattle and has been shown to regulate gastrointestinal microbiota and improve production performance. However, knowledge of the application of HMBi on cashmere goats and the simultaneous study of rumen and hindgut microbiota is still limited. In this study, HMBi supplementation increased the concentration of total serum protein, the production of microbial protein in the rumen and feces, as well as butyrate production in the feces. The results of PCoA and PERMANOVA showed no significant difference between the rumen microbiota, but there was a dramatic difference between the fecal microbiota of the two groups of Cashmere goats after the HMBi supplementation. Specifically, in the rumen, HMBi significantly increased the relative abundance of some fiber-degrading bacteria (such as Fibrobacter) compared with the CON group. In the feces, as well as a similar effect as in the rumen (increasing the relative abundance of some fiber-degrading bacteria, such as Lachnospiraceae FCS020 group and ASV32), HMBi diets also increased the proliferation of butyrate-producing bacteria (including Oscillospiraceae UCG-005 and Christensenellaceae R-7 group). Overall, these results demonstrated that HMBi could regulate the rumen and fecal microbial composition of Liaoning cashmere goats and benefit the host.


Assuntos
Ésteres , Microbiota , Animais , Bovinos , Feminino , Ácido Butírico/farmacologia , Ácido Butírico/metabolismo , Ésteres/metabolismo , Rúmen/microbiologia , Fermentação , Cabras , Dieta/veterinária , Fezes , Bactérias/metabolismo , Suplementos Nutricionais , Ração Animal/análise , Lactação/fisiologia
12.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38581217

RESUMO

Pelleted total mixed ration (P-TMR) feeding, which has become a common practice in providing nutrition for fattening sheep, requires careful consideration of the balance between forage neutral detergent fiber (FNDF) and rumen degradable starch (RDS) to maintain proper rumen functions. The present study aimed to investigate the effects of the dietary FNDF/RDS ratio (FRR) on chewing activity, ruminal fermentation, ruminal microbes, and nutrient digestibility in Hu sheep fed a P-TMR diet. This study utilized eight ruminally cannulated male Hu sheep, following a 4 × 4 Latin square design with 31 d each period. Diets consisted of four FRR levels: 1.0 (high FNDF/RDS ratio, HFRR), 0.8 (middle high FNDF/RDS ratio, MHFRR), 0.6 (middle low FNDF/RDS ratio, MLFRR), and 0.4 (low FNDF/RDS ratio, LFRR). Reducing the dietary FRR levels resulted in a linear decrease in ruminal minimum pH and mean pH, while linearly increasing the duration and area of pH below 5.8 and 5.6, as well as the acidosis index. Sheep in the HFRR and MHFRR groups did not experience subacute ruminal acidosis (SARA), whereas sheep in another two groups did. The concentration of total volatile fatty acid and the molar ratios of propionate and valerate, as well as the concentrate of lactate in the rumen linearly increased with reducing dietary FRR, while the molar ratio of acetate and acetate to propionate ratio linearly decreased. The degradability of NDF and ADF for alfalfa hay has a quadratic response with reducing the dietary FRR. The apparent digestibility of dry matter, organic matter, neutral detergent fiber, and acid detergent fiber linearly decreased when the dietary FRR was reduced. In addition, reducing the dietary FRR caused a linear decrease in OTUs, Chao1, and Ace index of ruminal microflora. Reducing FRR in the diet increased the percentage of reads assigned as Firmicutes, but it decreased the percentage of reads assigned as Bacteroidetes in the rumen. At genus level, the percentage of reads assigned as Prevotella, Ruminococcus, Succinivibrio, and Butyrivibrio linearly decreased when the dietary FRR was reduced. The results of this study demonstrate that the dietary FRR of 0.8 is crucial in preventing the onset of SARA and promotes an enhanced richness of ruminal microbes and also improves fiber digestibility, which is a recommended dietary FRR reference when formulating P-TMR diets for sheep.


Forage neutral detergent fiber (FNDF) and rumen degradable starch (RDS) are key components of carbohydrates in the diet for ruminants, which would reflect saliva secretion and the acid production potential of feed. However, appropriate FNDF to RDS ratios (FRR) applicable to ruminants under the condition of pelleted total mixed ration (P-TMR) feeding have not been reported. In this study, we investigated the effects of the dietary FRR on chewing activity, ruminal fermentation, ruminal microbial communities, and nutrient digestibility of Hu sheep under P-TMR feeding. The results indicate that reducing dietary FRR levels would induce acidosis in sheep, which negatively affected fiber utilization and ruminal bacterial communities. The FRR of 0.8 was a recommended dietary FRR when formulating a P-TMR diet for fattening sheep, as indicated by decreased ruminal acidosis risk and increased richness of ruminal microbes in the rumen as well as nutrient digestibility.


Assuntos
Acidose , Doenças dos Ovinos , Masculino , Feminino , Animais , Ovinos , Leite/metabolismo , Mastigação/fisiologia , Amido/metabolismo , Lactação/fisiologia , Detergentes/metabolismo , Silagem/análise , Propionatos/metabolismo , Fermentação , Rúmen/metabolismo , Fibras na Dieta/metabolismo , Carboidratos da Dieta/metabolismo , Dieta/veterinária , Nutrientes , Acetatos/metabolismo , Acidose/veterinária , Digestão/fisiologia
13.
Trop Anim Health Prod ; 56(4): 133, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642221

RESUMO

The aim of this study was to evaluate the growth performance, fermentation indices and meat quality of Sussex steers fed totally mixed rations that composed of graded inclusion levels of Napier grass (NP). Three experimental diets designated as diet 1 (0.0 g kg-1 NP: Control), diet 2 (300 g kg-1 NP grass) and diet 3 (600 g kg-1 NP) were formulated. Twenty-four male steers aged 8 months with an average body weight of 185.0 ± 30 kg were used. In a completely randomized design, the animals were allocated to the diets and fed for 120 days. Dietary NP inclusion reduced (P < 0.05) the animals' average daily gain and increased the feed efficiency. The steers' daily feed intake and final body weight decreased (P < 0.05) with a 600 g kg-1 inclusion level. The fermentation indices were not affected (P > 0.05) by the inclusion. While the inclusion reduced (P < 0.05) warm muscle temperature, it had no effect (P > 0.05) on carcass dressing percentage, warm and cold initial and ultimate pH. However, 600 g kg-1 inclusion level reduced (P > 0.05) warm and cold carcass weights. Meat physical attributes, moisture characteristics and tenderness were not affected (P > 0.05) by dietary treatments, except for the 7-days aged meat thaw loss, which increased at 600 g kg-1 inclusion level. Inclusion of 300 g kg-1 increased meat protein and fat, but dry and organic matter contents decreased with increasing inclusion levels. Dietary inclusion of NP grass up to 300 g kg-1 in steers' diets improved feed intake, carcass traits and yielded meat high in protein and fat.


Assuntos
Pennisetum , Masculino , Animais , Fermentação , Rúmen , Ração Animal/análise , Dieta/veterinária , Carne , Peso Corporal , Composição Corporal
14.
Trop Anim Health Prod ; 56(4): 142, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662082

RESUMO

Incorporating Curcumin into animal diets holds significant promise for enhancing both animal health and productivity, with demonstrated positive impacts on antioxidant activity, anti-microbial responses. Therefore, this study aimed to determine whether adding Curcumin to the diet of dairy calves would influence ruminal fermentation, hematologic, immunological, oxidative, and metabolism variables. Fourteen Jersey calves were divided into a control group (GCON) and a treatment group (GTRA). The animals in the GTRA received a diet containing 65.1 mg/kg of dry matter (DM) Curcumin (74% purity) for an experimental period of 90 days. Blood samples were collected on days 0, 15, 45, and 90. Serum levels of total protein and globulins were higher in the GTRA group (P < 0.05) than the GCON group. In the GTRA group, there was a reduction in pro-inflammatory cytokines (IL-1ß and IL-6) (P < 0.05) and an increase in IL-10 (which acts on anti-inflammatory responses) (P < 0.05) when compared to the GCON. There was a significantly higher (P < 0.05) concentration of immunoglobulin A (IgA) in the serum of the GTRA than the GCON. A Treatment × Day interaction was observed for haptoglobin levels, which were higher on day 90 in animals that consumed Curcumin than the GCON (P < 0.05). The catalase and superoxide dismutase activities were significantly higher (P < 0.05) in GTRA, reducing lipid peroxidation when compared to the GCONT. Hematologic variables did not differ significantly between groups. Among the metabolic variables, only urea was higher in the GTRA group when compared to the GCON. Body weight and feed efficiency did not differ between groups (meaning the percentage of apparent digestibility of dry matter, crude protein, and acid detergent fiber (ADF) and neutral detergent fiber (NDF). There was a tendency (P = 0.09) for treatment effect and a treatment x day interaction (P = 0.05) for levels of short-chain fatty acids in rumen fluid, being lower in animals that consumed curcumin. There was a treatment vs. day interaction (P < 0.05) for the concentration of acetate in the rumen fluid (i.e., on day 45, had a reduction in acetate; on day 90, values were higher in the GTRA group when compared to the GCON). We conclude that there was no evidence in the results from this preliminary trial that Curcumin in the diet of dairy calves interfered with feed digestibility. Curcumin may have potential antioxidant, anti-inflammatory, and immune effects that may be desirable for the production system of dairy calves.


Assuntos
Ração Animal , Curcumina , Dieta , Suplementos Nutricionais , Fermentação , Rúmen , Animais , Curcumina/administração & dosagem , Curcumina/farmacologia , Rúmen/metabolismo , Rúmen/efeitos dos fármacos , Bovinos , Ração Animal/análise , Dieta/veterinária , Suplementos Nutricionais/análise , Estresse Oxidativo/efeitos dos fármacos , Masculino , Citocinas/metabolismo , Desmame , Antioxidantes/metabolismo , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Feminino
15.
Anim Sci J ; 95(1): e13948, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38623923

RESUMO

We compared nucleic acid-extracted torula yeast (NTY) with soybean meal (SBM) to evaluate NTY as a potential protein feed for ruminants in a metabolic trial using four castrated male goats. NTY was replaced isonitrogenously with SBM at a 25% crude protein (CP) level on a dry matter (DM) basis. NTY has 55% CP and 74% total digestive nutrients on DM. Absorbed N was lower on the NTY diet, but since the urinary N excretion was lower on the NTY diet, no significant between-diet difference in retained N was observed. The efficiency of N utilization (retained N/absorbed N) was significantly higher on the NTY diet. The Lys and Met contents (presumed limiting amino acids for dairy cattle) were higher in NTY than SBM, which may be why N utilization efficiency was higher for the NTY diet. Ruminal ammonia-N and blood serum N were lower on the NTY diet, suggesting that NTY has more rumen undegradable protein than SBM. There was no significant between-diet difference in the visceral disorder indicators or antioxidant activities. Our results indicate that NTY is a safe protein feed with a high CP ratio and high-quality amino acid profile for ruminants that is equivalent to SBM.


Assuntos
Cryptococcus , Saccharomyces cerevisiae , Bovinos , Masculino , Animais , Ração Animal/análise , Farinha , Proteínas na Dieta/metabolismo , Rúmen/metabolismo , Nutrientes , Soja , Dieta/veterinária , Ruminantes/metabolismo , Aminoácidos/metabolismo , Digestão
16.
BMC Genomics ; 25(1): 394, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649832

RESUMO

BACKGROUND: Untargeted metabolomics and proteomics were employed to investigate the intracellular response of yak rumen epithelial cells (YRECs) to conditions mimicking subacute rumen acidosis (SARA) etiology, including exposure to short-chain fatty acids (SCFA), low pH5.5 (Acid), and lipopolysaccharide (LPS) exposure for 24 h. RESULTS: These treatments significantly altered the cellular morphology of YRECs. Metabolomic analysis identified significant perturbations with SCFA, Acid and LPS treatment affecting 259, 245 and 196 metabolites (VIP > 1, P < 0.05, and fold change (FC) ≥ 1.5 or FC ≤ 0.667). Proteomic analysis revealed that treatment with SCFA, Acid, and LPS resulted in differential expression of 1251, 1396, and 242 proteins, respectively (FC ≥ 1.2 or ≤ 0.83, P < 0.05, FDR < 1%). Treatment with SCFA induced elevated levels of metabolites involved in purine metabolism, glutathione metabolism, and arginine biosynthesis, and dysregulated proteins associated with actin cytoskeleton organization and ribosome pathways. Furthermore, SCFA reduced the number, morphology, and functionality of mitochondria, leading to oxidative damage and inhibition of cell survival. Gene expression analysis revealed a decrease the genes expression of the cytoskeleton and cell cycle, while the genes expression associated with inflammation and autophagy increased (P < 0.05). Acid exposure altered metabolites related to purine metabolism, and affected proteins associated with complement and coagulation cascades and RNA degradation. Acid also leads to mitochondrial dysfunction, alterations in mitochondrial integrity, and reduced ATP generation. It also causes actin filaments to change from filamentous to punctate, affecting cellular cytoskeletal function, and increases inflammation-related molecules, indicating the promotion of inflammatory responses and cellular damage (P < 0.05). LPS treatment induced differential expression of proteins involved in the TNF signaling pathway and cytokine-cytokine receptor interaction, accompanied by alterations in metabolites associated with arachidonic acid metabolism and MAPK signaling (P < 0.05). The inflammatory response and activation of signaling pathways induced by LPS treatment were also confirmed through protein interaction network analysis. The integrated analysis reveals co-enrichment of proteins and metabolites in cellular signaling and metabolic pathways. CONCLUSIONS: In summary, this study contributes to a comprehensive understanding of the detrimental effects of SARA-associated factors on YRECs, elucidating their molecular mechanisms and providing potential therapeutic targets for mitigating SARA.


Assuntos
Acidose , Proliferação de Células , Células Epiteliais , Metabolômica , Proteômica , Rúmen , Animais , Rúmen/metabolismo , Rúmen/efeitos dos fármacos , Acidose/veterinária , Acidose/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Bovinos , Proliferação de Células/efeitos dos fármacos , Ácidos Graxos Voláteis/metabolismo , Lipopolissacarídeos , Doenças dos Bovinos/metabolismo , Proteoma/metabolismo
17.
PLoS One ; 19(3): e0298930, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38507436

RESUMO

The rumen represents a dynamic microbial ecosystem where fermentation metabolites and microbial concentrations change over time in response to dietary changes. The integration of microbial genomic knowledge and dynamic modelling can enhance our system-level understanding of rumen ecosystem's function. However, such an integration between dynamic models and rumen microbiota data is lacking. The objective of this work was to integrate rumen microbiota time series determined by 16S rRNA gene amplicon sequencing into a dynamic modelling framework to link microbial data to the dynamics of the volatile fatty acids (VFA) production during fermentation. For that, we used the theory of state observers to develop a model that estimates the dynamics of VFA from the data of microbial functional proxies associated with the specific production of each VFA. We determined the microbial proxies using CowPi to infer the functional potential of the rumen microbiota and extrapolate their functional modules from KEGG (Kyoto Encyclopedia of Genes and Genomes). The approach was challenged using data from an in vitro RUSITEC experiment and from an in vivo experiment with four cows. The model performance was evaluated by the coefficient of variation of the root mean square error (CRMSE). For the in vitro case study, the mean CVRMSE were 9.8% for acetate, 14% for butyrate and 14.5% for propionate. For the in vivo case study, the mean CVRMSE were 16.4% for acetate, 15.8% for butyrate and 19.8% for propionate. The mean CVRMSE for the VFA molar fractions were 3.1% for acetate, 3.8% for butyrate and 8.9% for propionate. Ours results show the promising application of state observers integrated with microbiota time series data for predicting rumen microbial metabolism.


Assuntos
Microbiota , Propionatos , Feminino , Animais , Bovinos , Propionatos/metabolismo , Fermentação , Rúmen/metabolismo , Fatores de Tempo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Ácidos Graxos Voláteis/metabolismo , Acetatos/metabolismo , Butiratos/metabolismo , Dieta/veterinária , Ração Animal/análise
18.
Anim Sci J ; 95(1): e13937, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500367

RESUMO

This experiment aimed to study the degradation characteristics of bagasse after three fermentation treatments in beef cattle. Bagasse 1 was treated with 0.3% lactic acid bacteria (w/w). Bagasse 2 was treated with 0.3% mixed strains (Saccharomyces cerevisiae, Aspergillus niger, Aspergillus oryzae, and lactic acid bacteria at 2:1:1:1). Bagasse 3 was treated with 0.1% cellulase and 0.1% xylanase in addition to 0.3% mixed strains of bagasse 2. The dry matter (DM), crude ash (ASH), crude protein (CP), neutral detergent fiber (NDF), and acid detergent fiber (ADF) in the bagasses were determined. Compared to the control bagasse (without the strain and enzyme treatments), three fermented bagasses showed higher DM after 4 h fermentation. The CP and ASH contents in fermented bagasse 3 were the highest, while the contents of NDF and ADF in fermented bagasse 3 were the lowest among all the groups. The effective degradability of DM, CP, NDF, and ADF was highest in fermented bagasse 3 among the evaluated bagasse feed, followed by fermented bagasse 2 > fermented bagasse 1 > bagasse. Overall, fermented bagasse 3 was better than the control and other treated bagasses, thus fermented bagasse 3 is a hopeful source for ruminant diet of beef cattle.


Assuntos
Celulose , Detergentes , Rúmen , Bovinos , Animais , Rúmen/metabolismo , Fermentação , Detergentes/metabolismo , Digestão , Dieta/veterinária , Ruminantes/metabolismo , Saccharomyces cerevisiae , Ração Animal/análise , Fibras na Dieta/metabolismo
19.
Trop Anim Health Prod ; 56(2): 97, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38453787

RESUMO

Phytonutrients (PTN) namely saponins (SP) and condensed tannins (CT) have been demonstrated to assess the effect of rumen fermentation and methane mitigation. Phytonutrient pellet containing mangosteen, rambutan, and banana flower (MARABAC) and lemongrass including PTN, hence these plant-phytonutrients supplementation could be an alternative plant with a positive effect on rumen fermentation. The aim of this experiment was to evaluate the effect of supplementation of MARABAC and lemongrass (Cymbopogon citratus) powder on in vitro fermentation modulation and the ability to mitigate methane production. The treatments were arranged according to a 3 × 3 Factorial arrangement in a completely randomized design. The two experimental factors consisted of MARABAC pellet levels (0%, 1%, and 2% of the total substrate) and lemongrass supplementation levels (0%, 1%, and 2% of the total substrate). The results of this study revealed that supplementation with MARABAC pellet and lemongrass powder significantly improved gas production kinetics (P < 0.01) and rumen fermentation end-products especially the propionate production (P < 0.01). While rumen methane production was subsequently reduced by both factors. Additionally, the in vitro dry matter degradability (IVDMD) and organic matter degradability (IVOMD) were greatly improved (P < 0.05) by the respective treatments. MARABAC pellet and lemongrass powder combination showed effective methane mitigation by enhancing rumen fermentation end-products especially the propionate concentration and both the IVDMD and IVOMD, while mitigated methane production. The combined level of both sources at 2% MARABAC pellet and 2% lemongrass powder of total substrates offered the best results. Therefore, MARABAC pellet and lemongrass powder supplementation could be used as an alternative source of phytonutrient in dietary ruminant.


Assuntos
Cymbopogon , Suplementos Nutricionais , Animais , Fermentação , Técnicas In Vitro/veterinária , Metano/metabolismo , Nutrientes , Compostos Fitoquímicos/metabolismo , Pós/metabolismo , Propionatos/metabolismo , Rúmen/metabolismo
20.
Trop Anim Health Prod ; 56(2): 99, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38467996

RESUMO

Feeding low-quality forage (LQF) has been evaluated in mature ruminants and results show that it has been improved nitrogen utilization efficiency. The present study evaluated the interaction effect of feeding wheat straw as LQF (0 and 7.5%, DM basis) and starter protein level (20 vs. 24%, DM basis) on growth performance, ruminal fermentation, and microbial protein synthesis in Holstein dairy calves raised under moderate heat stress condition. Forty-eight 3-day old dairy calves (averaging 40.6 kg) were assigned in four experimental treatments as follow; 1) no LQF with 20% CP (NLQF-20CP), 2) no LQF with 24% CP (NLQF-24CP), 3) 7.5% LQF with 20% CP (LQF-20CP) and 4) 7.5% LQF and 24% CP (LQF-24CP). The calves were weaned on d 53 of age but the experiment extended until d 73 of age. Feeding LQF increased starter intake, average daily gain (tendency), ruminal acetate concentration, and improved fecal score of calves. The average daily gains before and after weaning were positively influenced with greater starter protein content. Hence, weaning and final BWs were improved when calves received greater CP content. In addition, greater starter CP content increased total ruminal volatile fatty acid concentration. With respect to the interaction effect between LQF feeding and starter protein content, the lower nitrogen excretion through urine was obtained for LQF-20CP diet among experimental treatments. The results of the current study showed that feeding LQF improved ruminal fermentation pattern and improved growth performance through increased starter intake. In addition, greater starter protein content is advisable during pre-weaning period for calves raised under mild heat stress condition. In conclusion, based on the results found in the current study, it can be suggested that feeding LQF for calves under heat stress condition can improve nitrogen utilization when dietary protein content is low. This can be opportunity to formulate starter diets with greater nitrogen utilization efficiency which is critical for accelerated growth programs at early stages of growth for young calves while calves raised under hot season condition.


Assuntos
Ração Animal , Rúmen , Animais , Bovinos , Peso Corporal , Fermentação , Rúmen/metabolismo , Ração Animal/análise , Dieta/veterinária , Desmame , Vitaminas/metabolismo , Nitrogênio/metabolismo , Purinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...